APPENDIX G UNITS OF MEASUREMENT

Weight

km

mm

m

kilometer(s)

millimeter(s)

meter(s)

g kg lb mg Mg ng oz ppb ppm	gram(s) kilogram(s) pound(s) milligram(s) megagram(s), metric ton(s) nanogram(s) ounce(s) (avoirdupois) parts per billion parts per million; when referring to dosing in a feeding study, ppm may be used to express the concentration of the substance in the feed (see also Airborne Concentrations below). parts per trillion	1 g 1 kg 1 lb 1 mg 1 Mg 1 ng 1 oz 1 ppb 1 ppm		0.3035 oz 2.2 lb or 1,000 g 0.45 kg 1/1,000 g; 10 ⁻³ g 10 ⁶ g or 2,205 lb 10 ⁻⁹ g 28.3 g µg/kg mg/kg
ppt μg mg/kg mol	microgram(s) when referring to dosing, it means milligrams (mg) of chemical administered per kilogram (kg) body weight of the dosed animal. mole, molecular weight (mol. wt.) in grams	1 ppt 1 μg	=	10 ⁻⁶ g
<u>Volume</u>				
cc or cm ³ gal l or L m ³ ml or mL ft ³	cubic centimeter(s) gallon(s) (U.S.) liter(s) cubic meter(s) milliliter(s) cubic foot (feet)	1 cc 1 gal 1 l 1 m ³ 1 mL 1 ft ³	= = = = = =	approximately 1 mL 3.8 L 1.05 liquid quarts 35 cubic feet 10^{-3} L 0.028 m ³
Length				
cm	centimeter(s)	100 cm	=	1 m

0.6 mile

3.3 feet

 $1/1,000 \text{ m}; 10^{-3} \text{ m}$

=

=

1 km

1 m

1 mm

Temperature

[°] C	degree(s) Celsius	°C	= (°F - 32) x 5/9
°Г	degree(s) Fahrenheit	°F	= ($^{\circ}$ C x 9/5) + 32

Exponentials

 10^2 , 10^3 , 10^6 , etc.: superscripts refer to the number of times "10" is multiplied by itself, e.g., $10^2 = 10 \times 10 = 100$; $10^3 = 10 \times 10 \times 10 = 1,000$.

Airborne Concentrations

mg/m³ milligram(s) per cubic meter air

ppm part per million; 1 ppm = $1/10^6 = 1 \times 10^{-6}$

mppcf millions of particles per cubic foot of contaminated air based on impinger samples

counted by light-field techniques; mppcf x 35.3 = millions of particles per cubic

meter.

(1) Permissible Exposure Limit (PEL) in ppm =

$$\frac{\text{(PEL in mg/m}^3) (24.45 \text{ L}) \quad \text{(m}^3/1000\text{L})}{\text{(mol. wt. in g) } (1000 \text{ mg/g})}$$

(2) PEL in mg/m³ =
$$\frac{\text{(PEL in ppm x } 10^{-6}) \text{ (mol. wt. in g) } (1000 \text{ mg/g})}{(24.45 \text{ L}) \text{ (m}^3/1000 \text{ L})}$$

where ppm equal the parts of vapor or gas per million parts of contaminated air by volume at 25°C and 760 torr barometric pressure, and where 24.45 L is the volume occupied by 1 mol of the vapor or gas under these conditions.

Let $x = \text{value of PEL in mg/m}^3$ and $y \cdot 10^{-6} = \text{the value of the PEL in ppm.}$ Then equation (2) reduces to

$$x \text{ mg/m}^3 = \underbrace{(y) \text{ (mol. wt.) mg/m}^3}_{24.45}$$

and equation (1) reduces to

$$y \text{ ppm} = \underline{24.45 x}$$

mol. wt.